A distance based clustering method for arbitrary shaped clusters in large datasets
نویسندگان
چکیده
Clustering has been widely used in different fields of science, technology, social science, etc. Naturally, clusters are in arbitrary (non-convex) shapes in a dataset. One important class of clustering is distance based method. However, distance based clustering methods usually find clusters of convex shapes. Classical single-link is a distance based clustering method, which can find arbitrary shaped clusters. It scans dataset multiple times and has time requirement of Oðn2Þ, where n is the size of the dataset. This is potentially a severe problem for a large dataset. In this paper, we propose a distance based clustering method, l-SL to find arbitrary shaped clusters in a large dataset. In this method, first leaders clustering method is applied to a dataset to derive a set of leaders; subsequently single-link method (with distance stopping criteria) is applied to the leaders set to obtain final clustering. The l-SL method produces a flat clustering. It is considerably faster than the single-link method applied to dataset directly. Clustering result of the l-SL may deviate nominally from final clustering of the single-link method (distance stopping criteria) applied to dataset directly. To compensate deviation of the l-SL, an improvement method is also proposed. Experiments are conducted with standard real world and synthetic datasets. Experimental results show the effectiveness of the proposed clustering methods for large datasets. & 2011 Elsevier Ltd. All rights reserved.
منابع مشابه
A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملDistance based Incremental Clustering for Mining Clusters of Arbitrary Shapes
Clustering has been recognized as one of the important tasks in data mining. One important class of clustering is distance based method. To reduce the computational and storage burden of the classical clustering methods, many distance based hybrid clustering methods have been proposed. However, these methods are not suitable for cluster analysis in dynamic environment where underlying data dist...
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملABACUS: Mining Arbitrary Shaped Clusters from Large Datasets based on Backbone Identification
A wide variety of clustering algorithms exist that cater to applications based on certain special characteristics of the data. Our focus is on methods that capture arbitrary shaped clusters in data, the so called spatial clustering algorithms. With the growing size of spatial datasets from diverse sources, the need for scalable algorithms is paramount. We propose a shape-based clustering algori...
متن کاملClustering Algorithm for 2D Multi-Density Large Dataset Using Adaptive Grids
Clustering is a key data mining problem. Densitybased clustering algorithms have recently gained popularity in the data mining field. Density and grid based technique is a popular way to mine clusters in a large spatial datasets wherein clusters are regarded as dense regions than their surroundings. The attribute values and ranges of these attributes characterize the clusters In this paper we a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 44 شماره
صفحات -
تاریخ انتشار 2011